

Composite Higgs

Florian Herren | February 11, 2016

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Contents

Ohiral Lagrangian

Chiral Lagrangian	EWSB	Composite Higgs
ormai Eagrangian	21100	eenipeene nigge

E ∽へへ Searches

Florian Herren - Composite Higgs

February 11, 2016 2/22

・ロト ・回ト ・ヨト・・ヨト・

QCD

- Quantum Chromodynamics
- describes interaction between quarks
- negative β -function
- nonperturbative at low energies
- gauge group: SU(3)

$$\mathcal{L} = \sum_{i=1}^{nf} \overline{\Psi}_i \left(i \not \! D - m_i \right) \Psi_i - \frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu}$$
$$G^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu$$

Chiral Lagrangian

EWSB

Searches

Florian Herren - Composite Higgs

February 11, 2016 3/22

What happens at low energies?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- cannot use QCD Lagrangian for perturbation theory anymore
- quarks and gluons form a plethora of hadrons
- protons and neutrons form nuclei
- all other hadrons decay via the weak interaction
- hadrons are much more massive than quarks

- the three lightest mesons
- masses: 134,98 MeV (π^0), 139,57 MeV (π^{\pm})
- much lighter than all other resonances ($m_{\eta} = 547,86 \text{ MeV}$)
- pseudoscalar

Chiral Lagrangian	EWSB	Composite Higgs	Searches
Florian Herren – Composite Higgs		February 11, 2016	5/22

Where does the proton/neutron mass come from?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- proton and neutron form an isospin doublet $\Psi = \begin{pmatrix} p \\ n \end{pmatrix}$
- in the massless case we can decompose left- and right-handed fields:

$$\mathcal{L} = i\overline{\Psi}_L \partial \!\!\!/ \Psi_L + i\overline{\Psi}_R \partial \!\!\!/ \Psi_R$$
$$\Psi_{L,R} = \frac{1}{2} (1 \mp \gamma^5) \Psi$$

- invariant under $SU(2)_L \otimes SU(2)_R$
- Gell-Mann and Levi: generate mass through spontaneous breaking of chiral symmetry

Chiral Lagrangian	EWSB	Composite Higgs		Searches
Florian Herren - Composite Higgs			February 11, 2016	6/22

Σ-Model

$$\mathcal{L} = i \overline{\Psi} \partial \!\!\!/ \Psi - g \overline{\Psi}_L \Sigma \Psi_R - g \overline{\Psi}_R \Sigma^\dagger \Psi_L + \mathcal{L}(\Sigma)$$

- Σ transforms like $L\Sigma R^{\dagger}$ under $SU(2)_L \otimes SU(2)_R$
- $\mathcal{L}(\Sigma)$ invariant under $SU(2)_L \otimes SU(2)_R \Rightarrow \mathcal{L} = f(Tr[\Sigma\Sigma^{\dagger}])$
- linear ansatz: $\Sigma = \sigma + i\pi^a \tau^a$ with simple symmetry breaking potential with VEV F_{π} and the Pauli matrices τ^a
- nonlinear ansatz: $\Sigma = \rho \exp(i\pi^a \tau^a / F_{\pi})$
- both models break the chiral symmetry

• chiral current
$$j_{5,\mu}^a = -(\partial_\mu \pi^a)F_\pi + \mathcal{O}(\phi^2)$$

 $\Rightarrow \langle \mathbf{0}_{had} | j_{5,\mu}^a | \pi^b \rangle = iF_\pi p_\mu \delta^{ab}$

Chiral Lagrangian

EWSI

Composite Higgs

Searches

Mass sector

$$\begin{split} \mathcal{L}_{\mathrm{mass}} = & M_W^2 W_\mu^+ W^{-\mu} + \frac{1}{2} M_Z^2 Z^\mu Z_\mu \\ & - \sum_{i,j} \left(\overline{u}_L^{(i)} M_{ij}^u u_R^{(j)} + \overline{d}_L^{(i)} M_{ij}^d d_R^{(j)} + \overline{e}_L^{(i)} M_{ij}^e e_R^{(j)} \right) + h.c. \end{split}$$

- scattering of longitudinally polarized W[±] and Z bosons leads to violation of unitarity
- rewrite boson masses by introducing $\Sigma(x) = \exp(i\sigma^a \chi^a / v)$
- Goldstone bosons interact with vector bosons trough

$$D_{\mu}\Sigma=\partial_{\mu}\Sigma-igrac{\sigma^{a}}{2}W_{\mu}^{a}\Sigma+ig'\Sigmarac{\sigma^{3}}{2}B_{\mu}$$

• under $SU(2)_L \otimes U(1)_Y \Sigma$ transforms as $\Sigma \to U_L(x) \Sigma U_Y^{\dagger}(x)_{\Xi}$

Chiral Lagrangian

Composite Higgs

Searches

Florian Herren - Composite Higgs

February 11, 2016 8/22

Mass sector

$$\mathcal{L}_{\rm mass} = \frac{v^2}{4} \operatorname{Tr} \left[(D_{\mu} \Sigma)^{\dagger} \left(D^{\mu} \Sigma \right) \right] - \frac{v}{\sqrt{2}} \sum_{i,j} \left(\overline{u}_L^{(i)} \overline{d}_L^{(i)} \right) \Sigma \begin{pmatrix} \lambda_{ij}^u u_R^{(j)} \\ \lambda_{ij}^d d_R^{(j)} \end{pmatrix} + h.c.$$

• v is the Higgs VEV

 $\bullet\,$ in unitary gauge $\langle \Sigma \rangle = 1$ this reproduces the former mass Lagrangian

$$\bullet \ \rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1$$

Chiral Lagrangian

EWSB

Composite Higgs

Searches

Florian Herren - Composite Higgs

February 11, 2016 9/22

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Custodial Symmetry

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへつ

- $\mathcal{L}_{\mathrm{mass}}$ invariant under $SU(2)_L \otimes SU(2)_R$ for g' = 0 and $\lambda_{ii}^{u,d} = 0$
- SU(2)_C remains after EWSB
- χ^a triplett under $SU(2)_C \Rightarrow M_W = M_Z$

•
$$g' \neq 0 \Rightarrow M_W = M_Z \cos^2 \theta_W$$

- Yukawa couplings lead to small corrections to p
- Extensions of the SM should respect SU(2)_C

Chiral Lagrangian	EWSB	Composite Higgs	Searches
Florian Herren – Composite Higgs		February 11, 2016	10/22

SM Higgs Boson

• introduce h(x) as a singlet under $SU(2)_L \otimes SU(2)_R$

$$\begin{split} \mathcal{L}_{\mathrm{H}} &= \frac{1}{2} (\partial_{\mu} h)^{2} + V(h) \\ &+ \frac{v^{2}}{4} \operatorname{Tr} \left[(D_{\mu} \Sigma)^{\dagger} (D^{\mu} \Sigma) \right] \left(1 + 2a \frac{h}{v} + b \frac{h^{2}}{v^{2}} + \mathcal{O}(h^{3}) \right) \\ &- \frac{v}{\sqrt{2}} \sum_{i,j} \left(\overline{u}_{L}^{(i)} \overline{d}_{L}^{(i)} \right) \Sigma \left(1 + c \frac{h}{v} + \mathcal{O}(h^{2}) \right) \begin{pmatrix} \lambda_{ij}^{u} u_{R}^{(j)} \\ \lambda_{ij}^{d} d_{R}^{(j)} \end{pmatrix} \\ &+ h.c. \end{split}$$

unitarizes scattering of Goldstone bosons for a = b = c = 1
takes the standard form with:

$$H(x) = \frac{1}{\sqrt{2}} \exp(i\sigma^a \chi^a / v) \begin{pmatrix} 0 \\ v + h(x) \\ 0 \end{pmatrix}$$

Chiral Lagrangian

Composite Higgs

Why would one want another strong sector?

(日)

San

- no mass corrections from above the compositness scale ⇒ solves hierachy problem
- new resonances unitarize theory

Chira Floria possible connection to higher dimensional models
 new physics to explore

Lagrangian	EWSB	Composite Higgs		Searches	
n Herren – Composite Higgs			February 11, 2016	12/22	

Ingredients

- global symmetry *G*, broken down to H_1 at a scale $f \Rightarrow n = \dim(G) \dim(H_1)$ Goldstone bosons
- $H_0 \subset G$ gauged by external vector bosons
- $H = H_1 \cap H_0$ unbroken gauge group
 - \Rightarrow $n_0 = \dim(H_0) \dim(H)$ eaten up \Rightarrow $n n_0$ survive

A minimal example

• For the SM
$$H_0 = SU(2)_L \otimes U(1)_Y$$

•
$$G = SO(5) \otimes U(1)_X$$
 broken down to $SO(4) \otimes U(1)_X$
 $\Rightarrow n = 4$

•
$$H_0 \subset SO(4) \simeq SU(2)_L \otimes SU(2)_R$$

 $\Rightarrow n_0 = 0$

- hypercharge generator $Y = T^{3R} + X$
- (H, H^c) transforms as (2, 2) under $SU(2)_L \otimes SU(2)_R$
- $SU(2)_L \otimes U(1)_Y$ unbroken at tree level
- G explicitly broken by couplings of SM particles to the strong sector ⇒ fermions and gauge bosons generate Higgs potential

•
$$m_h \sim g_{SM} v, \, m_
ho \sim g_
ho f$$

Chiral Lagrangian	EWSB	Composite Higgs	Searches
Florian Herren - Composite Higgs		February 11, 2016	14/22

Back to the Σ -model

•
$$\Sigma = \Sigma_0 \exp\left(-i\sqrt{2}T^{\hat{a}}h^{\hat{a}}(x)/f\right)$$

•
$$\Sigma_0$$
 preserves $SO(4)$ symmetry: $\Sigma_0 = (0, 0, 0, 0, 1)$
 $\Rightarrow \Sigma = \frac{\sin(h/f)}{f} (h^1, h^2, h^3, h^4, h \cot(h/f))$

■ consider the whole SO(5) ⊗ U(1)_X is gauged, so we can write L in momentum space:

$$\mathcal{L} = \frac{1}{2} P_T^{\mu\nu} \left[\Pi_0^X(q^2) X_\mu X_\nu + \Pi_0(q^2) \operatorname{Tr}(A_\mu A_\nu) + \Pi_1(q^2) \Sigma A_\mu A_\nu \Sigma^T \right]$$

- Σ classical background, derivative interactions not included
- expanding around Σ_0 one obtains $\mathcal{L} = \frac{1}{2} P_T^{\mu\nu} \left[\Pi_0^X(q^2) X_\mu X_\nu + \Pi_a(q^2) \operatorname{Tr}(A^a_\mu A^a_\nu) + \Pi_{\hat{a}}(q^2) A^{\hat{a}}_\mu A^{\hat{a}}_\nu \right],$ $\Pi_a = \Pi_0, \Pi_{\hat{a}} = \Pi_0 + \frac{\Pi_1}{2}$

Chiral Lagrangian

Back to the Σ -model

- from our discussion of pions we can deduce that $P_T^{\mu\nu}\Pi_{\hat{a}}(0) = \langle J_{\hat{a}}^{\mu}(0)J_{\hat{a}}^{\nu}(0) \rangle = \eta^{\mu\nu}\frac{f^2}{2}$
- a similar discussion leads to $\Pi_a(0) = 0$ $\Rightarrow \Pi_0(0) = \Pi_0^X(0) = 0, \Pi_1(0) = f^2$
- $\bullet\,$ switching off the unphysical gauge fields and using our ansatz for $\Sigma\,$ we obtain

$$\begin{split} \mathcal{L} &= \frac{1}{2} P_T^{\mu\nu} \Bigg[\left(\Pi_0^X(q^2) + \Pi_0(q^2) + \frac{\sin^2(h/f)}{4} \Pi_1(q^2) \right) B_\mu B_\nu \\ &+ \left(\Pi_0(q^2) + \frac{\sin^2(h/f)}{4} \Pi_1(q^2) \right) W_\mu^a W_\nu^a \\ &+ 2 \sin^2(h/f) \Pi_1(q^2) \hat{H}^\dagger T^{aL} Y \hat{H} A_\mu^{aL} B_\nu \Bigg] \end{split}$$

Chiral Lagrangian

EWSI

Composite Higgs

Searches

February 11, 2016 16/22

・ロト ・ 理 ト ・ 王 ト ・ 王 ・ つへつ

Let's compare this to the SM

• for $q^2 \ll m_\rho^2$ and aligning the Higgs VEV along the h^3 direction we obtain

$$egin{split} \mathcal{L} &= P_T^{\mu
u} \Bigg[rac{1}{2} \left(rac{f^2 \sin^2(\langle h
angle / f)}{4}
ight) \left(B_\mu B_
u + W_\mu^3 W_
u^3 - 2 W_\mu^3 B_
u
ight) \ &+ \left(rac{f^2 \sin^2(\langle h
angle / f)}{4}
ight) W_\mu^+ W_
u^- \ &+ rac{q^2}{2} \left[\Pi_0'(0) W_\mu^a W_
u^a + (\Pi_0'(0) + \Pi_0^{X\prime}(0)) B_\mu B_
u
ight] + \dots \end{split}$$

• for the gauge couplings we obtain $\frac{1}{g^2} = -\Pi'_0(0)$ and $\frac{1}{g'^2} = -(\Pi'_0(0) + \Pi^{X'}_0(0))$

• the Higgs VEV is given by $v = f \sin \frac{\langle h \rangle}{f}$, define $\xi \equiv \frac{v^2}{f^2}$

Chiral Lagrangian

Florian Herren - Composite Higgs

Let's compare this to the SM

- expanding $f^2 \sin^2 \frac{h}{f}$ leads to $v^2 + 2v\sqrt{1-\xi}h + (1-2\xi)h^2$ where *h* is now the physical Higgs field
- w.r.t the SM the VVh and VVhh couplings are modified: $g_{VVh} = g_{VVh}^{SM} \sqrt{1-\xi}, g_{VVhh} = g_{VVhh}^{SM} (1-2\xi)$
- this means $a = \sqrt{1-\xi}$ and $b = (1-2\xi)$
- for nonvanishing ξ the Higgs only partly unitarizes the scattering of vector bosons
- for $\xi = 1$ f = v and we obtain a minimal Technicolor theory with a light scalar

Chiral Lagrangian	EWSB	Composite Higgs	Searches
Florian Herren – Composite Higgs		February 11, 2016	18/22

What changes w.r.t Fermions?

- things work different than in the boson sector
- have to choose a representation of SO(5) in which the fermions live
- spinorial representation (MCHM4): $c = \sqrt{1-\xi}$
- fundamental representation (MCHM5): $c = \frac{1-2\xi}{\sqrt{1-\xi}}$

('hiral	lagrangian
Uninal	Lauranulan

February 11, 2016 19/22

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

How do observables change in the MCHM4?

- fermionic and bosonic couplings scale by a factor of $\sqrt{1-\xi}$
- branching ratios remain the same
- total width reduced by a factor 1ξ
- the same for production cross-sections
- in principle loop induced decays could be modified by new particles (e.g. top-partners)

Chiral Lagrangian	EWSB	Composite Higgs		Searches
Florian Herren – Composite Higgs			February 11, 2016	20/22

How do observables change in the MCHM5?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- fermionic and bosonic couplings scale differently
- partial decay width for fermions and gluons reduced by $\frac{(1-2\xi)^2}{1-\xi}$
- partial decay width for vector bosons reduced by (1ξ)
- Higgs coupling to photons more complicated, since there are fermion- and W-loops
- gluon fusion and $t\bar{t}H$ cross-sections reduced by $\frac{(1-2\xi)^2}{1-\xi}$

How do branching ratios change in the MCHM5?

200

Figure: Espinosa, Grojean and Mühlleitner [arXiv:1003.3251]

Chiral Lagrangian	EWSB	Composite Higgs		Searches
Florian Herren - Composite Higgs			February 11, 2016	22/22