

LHC Searches for the Higgs Bosons and potential Higgs Singlet Extensions of the SM

Roger Wolf

10. December 2015

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Energy radiated off per rotation cycle:

$$P = \frac{e^2}{6\pi\epsilon_0 c} |\vec{\beta}|^2 \gamma^4 = \frac{e^2 c}{6\pi\epsilon_0 \rho^2} \gamma^4 = \frac{e^4}{6\pi\epsilon_0 \rho^2} \frac{E^2 B^2}{m^4}$$
$$P(p|_{m_p=1 \text{ GeV}}) = 280 \ \mu\text{W}$$

$$P(e|_{m_e=0.511 \text{ MeV}}) = 450 \text{ kW}$$

- Construction costs: 4.1 billion \$
- Construction time : 14 years
- Circumference : 27 km
- No of dipoles : 1232
- Power : 120 MW
- Luminosity(8TeV) : 8 nb/sec

- Construction costs: 4.1 billion \$
- Construction time : 14 years
- Circumference : 27 km
- No of dipoles : 1232
- Power : 120 MW
- Luminosity(8TeV) : 8 nb/sec

Key demands on Experiments

Key demands on Experiments

Key demands on Experiments

The Large Scale Solution (ATLAS)

- Magnet field (solenoid): 2.6 T (inside calorimeter)
- Magnet field (toroid): ~4 T (outside calorimeter)
- Tracker: Si/multi-wire chambers
- ECAL/HCAL: LAr (varying granularity)

Magnet Field:

- Length : 45 m
- Diameter : 22 m
- Weight : 7'000 t

The Compact Solution (CMS)

- Magnet field: 3.8 T (outside calorimeter)
- Tracker: Si $(\delta p/p = 0.5\%$ for a 10 GeV track)
- ECAL: PbWO₄(${}^{\delta E}/{E} = 1\%$ for a 30 GeV e/γ , $X_0 = 28$)
- HCAL: Sampling (brass scintillator, ${}^{\delta E}/{E} = 10\%$ for a 100 GeV $\pi^{+/-}$, $\lambda_i = 10$)

Silicon Tracker:

• Length : 21 m

- Diameter : 16 m
- Weight : 12'500 t

Electromagnetic Calo:

$10^{11} \sigma_{incl}(pp)$

The challenge

 10^{8}

A Long Road of Theory Developments

Most Important Decay Channels

	Channel	Resolution	S/B
	$H o \gamma \gamma$	1-2%	$\mathcal{O}(0.1)$
$\kappa_{HVV} = \frac{2m_V^2}{v}$	$H \rightarrow ZZ$	1-2%	$\mathcal{O}(>1)$
, C	$H \to WW$	20%	$\mathcal{O}(1)$
$K_{III} = \frac{m_f}{2} \int$	$H \rightarrow bb$	10%	$\mathcal{O}(0.1)$
$n_{Hff} - v$	$H \to \tau \tau$	15%	$\mathcal{O}(0.1)$

$H \rightarrow \gamma \gamma \,\,$ Decay Channel

$H \rightarrow ZZ$ Decay Channel

• Most important search channels: $4\mu \ 2\mu 2e \ 4e$

$H \rightarrow bb$ Decay Channel

	Decay Mode	BR				$/ \overline{\nu}_{e}, \overline{\nu}_{\mu},$	d
	$\tau \to e\nu_e\nu_\tau$	17.83%	= vi		/	ł.	
	$ au o \mu u_{\mu} u_{ au}$	17.41%	v of a ode		W^-	\rightarrow e^- ,	μ^-, \overline{u}
	$\tau \rightarrow 1$ -prong ν_{τ}	37.10%		$\xrightarrow{\tau^{-}}$	e		4
	$\tau \rightarrow 3$ -prong ν_{τ}	15.20%			ν_{τ}		
							P
•	Search for 2 isola (e , μ , τ_h).	ted high p	T leptons	5		μ	
•	Reduce obvious E_T) & reconstruct	backgroun t $m_{ au au}$.	ds (use d	on e			
•	Exploit <mark>character</mark> is mode to increase	stics of prosentity sensitivity	oduction	τ_h			Six decay modes:
							$ au_h au_h, \ \mu au_h, \ e au_h,$
							$e\mu$, $\mu\mu$, ee

ATLAS+CMS LHC run-1 combination:

Coupling structure

• Event categories : 574

• Nuisance parameters: 4268

 $\mu = \sigma/\sigma_{SM} = 1.09 \pm 0.11$

-PAS-HIG-15-002

ATLAS+CMS LHC run-1 combination:

"Money plot"

High mass Higgs boson search in WW and ZZ

- Search in mass range of $m_H = 145 \dots 1000 \text{ GeV}$.
- Combination of several channels in *WW* and *ZZ* (55 channels/categories).

 Additional Higgs boson with same production cross section and BR as expected for the SM (for given mass value).

EWK singlet admixtures?

Additional heavy Higgs (H) that mixes with h(125).

High mass Higgs boson search in $\gamma\gamma$

- Search in mass range of $m_H = 150 \dots 850 \text{ GeV}$.
- Combination of four sub-categories.
- Analysis strategy same as for SM Higgs search.

19.7 fb⁻¹ (8 TeV

600

m_{γγ} [GeV]

Gev

Events/6.7

Data/Bkg

 10^{3}

10²

10

CMS

Class 2

300

- Data

Fit model

Fit χ^2 /dof = 0.72

400

 χ^2 Prob = 0.95

500

10⁴

10³

 10^{2}

10

CMS

Class 3

300

Data

Fit model

Fit χ^2 /dof = 1.01

 χ^{2} Prob = 0.45

400

500

GeV

Events/6.7

Data/Bkg

High mass Higgs boson search in $\gamma\gamma$

- Search in mass range of $m_H = 150 \dots 850 \text{ GeV}$.
- Combination of four sub-categories.
- Analysis strategy same as for SM Higgs search.

