

KSETA-Course: Accelelerator-Based Particle Physics

QCD and Jet Physics

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

QCD Reminder

- Force between color-charged particles
 ⇒ 6 quarks (with colors), 6 anti-quarks (with anti-colors)
- Coupling constant α_s
- Described in field theory by SU(3) group
 ⇒ force carried by 8 gluons, each with one color + one anti-color
 ⇒ non-abelian → gluon self-interactions

KSETA Courses 2018

Strong Coupling

- Vacuum polarization effects:
 ⇒ couplings depend on energy
- EM: screening
 ⇒ coupling stronger at higher
 energies
- QCD: anti-screening
 - ⇒ coupling weaker at higher energies
- Consequences:
 ⇒ confinement
 ⇒ asymptotic freedom

QCD Reminder: Phenomenology

- Confinement: strong coupling increasing at low energies, large distances
 ⇒ QCD potential rising infinitely
 ⇒ no free color-charged particles observable, only hadrons
- Asymptotic freedom: coupling shrinking at high energy
 ⇒ α_s small enough for perturbation theory
 ⇒ collider strong physics framed as quark + gluon physics

Reminder: QCD-Factorisation

cross section = PDF \otimes hard process \otimes hadronisation

Proton Structure

- Probe proton structure with scattering experiments
- Inspiration: Rutherford Scattering

 \Rightarrow charge distribution within proton

- Add additional degree of freedom: inelastic scattering
 → scattering angle
 - \rightarrow energy loss

Deep Inelastic Scattering

- Kinematic variables: four-momentum transfer: $Q^2 = -q^2 = (k - k')^2$ inelasticity: $y = \frac{P \cdot q}{P \cdot k} = \frac{E - E'}{E}$ "scaling variable" $x = \frac{Q^2}{2P \cdot q}$ mass of scattered system: $W = (P + q)^2$

- Processes described by just two variables $Q^2 = xys$ (s = center-of-mass energy)
- Kinematics determined by electron kinematics alone
- "Deep Inelastic" if $W \gg M$

Structure Functions

with F_2 , F_3 , F_L intrinsic properties of the proton

• Interpret proton in the quark model \Rightarrow functions get meaning xP: momentum carried by struck quark $p \longrightarrow p$

$$F_{2}(x,Q^{2}) = x \sum_{q} e_{q}^{2}(q(x,Q^{2}) + \bar{q}(x,Q^{2}))$$

$$xF_{3}(x,Q^{2}) = x \sum_{q} e_{q}^{2}(q(x,Q^{2}) - \bar{q}(x,Q^{2})) P$$

$$= 0 \text{ (in leading order)}$$

 $P \rightarrow O$

 $F_L(x, Q^2) = 0$ (in leading order)

Bjorken Scaling

- Naive assumption: pointlike constituents: $F_2(x,Q^2) \rightarrow F_2(x)$
- 1969: SLAC+MIT experiments
- Quarks are real!
- looks like scaling

8=10°

ELASTIC

 $q^2 (GeV/c)^2$

5

10

a/a^{Mott} o.⁰

10-3

10-4

2

1/3

 $F_2(x)$

 \boldsymbol{x}

Scaling Violations

low x: Gluon splitting enhances quark density \Rightarrow F₂ rises with Q²

high x: Gluon radiation shifts quark to lower x \Rightarrow F₂ falls with Q²

Parton-Model and PDFs

$$F_2(x) = \sum_i q_i^2 x f_i(x)$$

- Simple Model: three valence quarks \rightarrow F₂ = 1/3
- Gluon-exchange
 between valence quarks
 → smearing
- Gluon-exachnge and Gluonradiation → sea quarks

1/3

 $r_2(x)$

PDFs

MSTW 2008 NLO PDFs (68% C.L.)

Gluon-density steeply with falling x
 ⇒ high cross sections for gluon induced processes at the LHC

Heavy quarks at high momentum transfer
 ⇒ proton effectively "contains" quarks heavier than itself

Parton Shower

- Fragmentation of partons:
 - partons can split into more partons ("parton splitting") \rightarrow parton shower
 - parton shower: probabilistic modell for fragmentation, aequivalent to resumming
- Described with Sudakov form factor
 - Probability for the splitting on a parton i in j: splitting function P_{ji}
 - Solve DGLAP-equation for parton shower: Sudakov form factor

$$\Delta_i(t) = \exp\left[-\sum_j \int_{t_0}^t \frac{\mathrm{d}t'}{t'} \int_0^1 \mathrm{d}y \, \frac{\alpha_S}{2\pi} \, P_{ji}(y)\right]$$

Interpretation: probability that no splitting occurs

Parton Shower Algorithms

- Sudakov picture of parton shower well suited for MC-simulation
- Basic algorithm: Markov-chain
 - \rightarrow Each step only based on information from previous step
 - Start: Virtuality t₁, momentum fraction of parton x₁
 - Randomly generate new virtuality t_2 with random number $R_t \in [0,1]$ with

$$\frac{\Delta(t_2)}{\Delta(t_1)} = R_t$$

Randomly generate new momentum fraction x_2 with $R_x \in [0,1]$

$$\frac{\int_0^{x_2/x_1} \mathrm{d}z \, \frac{\alpha_s}{2\pi} \, P(z)}{\int_0^1 \mathrm{d}z \, \frac{\alpha_s}{2\pi} \, P(z)} = R_x$$

- randomly generate azimuthal angle $\Phi \in [0, 2\pi]$
- iterate until virtuality reaches threshold

Hadronisation Models

- Transition from partons to hadrons: not perturbative
 → phaenomenologic models
- Monte-Carlo models quite successful
 - Complete final state predictions \rightarrow directly applicable to experiments
 - Disadvantage: many ad-hoc-parameters
 - \rightarrow Requires optimization
 - \rightarrow may hide actual physics effects
- Most common models
 - Independent fragmentation (historical)
 - Lund string model (Pythia)
 - Cluster model (Herwig, Sherpa)

Independent Fragmentation

- Ansatz: each parton fragments independently (Field, Feynman, Nucl. Phys. B136 (1978) 1) "HIERARCHY" OF FINAL MESONS
 - Algorithm
 - Start: original quark
 - Quark-antiquark-pairs created from vacuum → primary Meson with energyfraction z
 - New starting point: remaining quark with energyfraction 1 – z
 - Stop: at a lowert energy-threshold
 - Fragmentation-funktion D(z): Probability to find a Hadron with energy fraction z in a Jet (not perturbative, has to be measured)

Lund String Model

- Ansatz: quark-antiquark-pairs form strings (Andersson et al., Lunds universitet, Phys. Rept 97 (1983) 31)
 - QCD potential: At large distances like a tensioned string

$$V(r) = -\frac{4}{3}\frac{\alpha_{\mathcal{S}}(1/r^2)}{r} + kr$$

- Quark-antiquark-pairs form strings
- Strings break, when V(r) large enough
 → new quark-antiquark-pairs
- Gluons: "kinks" in strings
- Create hadrons at a lower energy threshold
- Commonly used implementation: Pythia

[nach: Ellis et al., QCD and Collider Physics]

Cluster Model

- Ansatz: Colorflow during hadronization subject to confinement
 → form colorneutral clusters of partons
 - original paper: Webber, Nucl. Phys. B238 (1984) 492
 - Gluons (color + anticolor charge): split into quark-antiquark-Pairs
 - Decay von clusters according to available phase-space
- Advantage: no free parameters
- Commonly used implementation: Herwig

Jet Algorithms

Cone Algortihms

Iterative cone algorithms: Jet = energy flow in cone of radius R in (y,φ)- or (η,φ)-space

 $R = \sqrt{(y - y_0)^2 + (\phi - \phi_0)^2}$

Algorithm: Find all stable cones
 Include in jet, if distance from center

$$\Delta_{iC} = \sqrt{(y_i - y_C)^2 + (\phi_i - \phi_C)^2} \le R$$

Recompute center
 Iterate until cone is stable

Starting point ("seed")

Fixed seeds (e.g. calorimeter cluster above threshold): not IR safe

try all possible seeds

- \rightarrow gain IR safety
- \rightarrow can be numerically intensive

Teilchenphysik II: W, Z, Top am Collider (4022161) – 4. Vorlesung

Sequential Recombination

Main class: kt-algorithms

- Define distance measure d_{ij} between transverse momenta k_t e $d_{ij} = \min(k_{t,i}^{2n}, k_{t,j}^{2n}) \frac{\Delta R_{ij}}{R}$
- Define distance to beam: $d_{iB} = k_{t,i}^{2n}$
- Compute *d_{ij}* for all pairs of particles
- Jet found, if d_{iB} smallest d_{ij}
- Otherwise: combine particles *i* and *j*
- Variants
 - n = 1: k_t-algorithm \rightarrow combine similar k_t first
 - **I** n = 0: Cambridge/Aachen-(C/A-)algorithm ($d_{iB} = 1$) \rightarrow purely geometrical
 - \square n = -1: anti-kt-algorithm (LHC-Standard, ATLAS: R = 0.4, CMS: R = 0.4) \rightarrow combine all low kt around "hard" particle first

sequential recombination

KSETA Courses 2018

Desireable Properties

IR-safety:

soft gluon radiation has high probability \rightarrow shouldn't matter for jet

Collinear safety:

parton splitting probability divergent \rightarrow shouldn't matter for jet

Boost invariance:

at hadron colliders cms-frame not known

- \rightarrow shouldn't matter for jet
- Compute Performance:

need to reconstruct jets in finite time

Shape regularity

how to subtract noise/pileu-up \rightarrow prefer regular shape, less greedy algo. (mostly a concern for hadron colliders)

Coll. unsafe: Sensitive to the

splitting of a 4-vector (seeds!)

Jet Production

Challenges with Jets

Huge statistical precision: Dream or nightmare?

- Systematic effects are everywhere:
 - => Jet energy scale/resolution
 - => Jet energy corrections depend on parton type/flavor
 - => Pileup effects
 - => ...
- Theory uncertainties not negligible
 => QCD is hard to compute
 => PDFs not precisely known
 => Non-perturbative effects at low p_T

Jet Energy Calibration

■ Determine parton energy from "raw" detector measurement → calibration jet energy scale (JES)

- Calorimeter cells: equalize response, mask at high noise
- Calorimeter (whole): correct for different response to EM particles and hadrons ("compensation")
- Additional energy in the jet,
 e. g. pile-up
- Particles not caught by the jet algorithm ("out of cone")
- Differences in jet shapes for jets from gluons, udsc-quarks, b-Quarks

α_s: 3-jet mass

- More jets in the final state => higher power of α_s
- Tricky theory calculation (NLO available)
- Correlated with PDFs => requires tuned PDF-sets

 α_s : Results

