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Reminder: what is flavor?

Quarks and quantum numbers
six different flavors
→ six different quantum numbers
conserved in strong and EM interaction
can change in weak interaction
three up-type (charge 2/3)
three down-type (charge -1/3)

Why flavor physics?
classic flavor physics:
hadrons with s,c,b quarks
top quark too unstable to form hadrons
→ mostly considered ist own field
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Reminder: History
1953: Gell-Mann and Nishijima:
§ Explain “strange particles” with new

flavor quantum number strangeness (S)
§ strangeness conserved in strong and EM interaction

changes in weak interaction

1964: Gell-Mann
§ particle zoo (hadrons) explained in the quark model

(using u,d,s quarks)

Nobel price
1969
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Nucl. b-decays, meson- decays, nN-scattering:
® universal coupling of weak interaction to leptons and quarks

observations:

not observed

observed

i.e. quarks
change family
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Observation from n, m decays GF(n)/GF(m) = 0.98 ¹ 1

Nicola Cabibbo: quarks mix → mass-eigenstates ¹ flavor-eigenstates

weak isospin doublet

mass eigenstates d,s,b u,c,t flavor-eigenstates d’,s’,b’   u,c,t
Þ u

d

u

s

convention

Cabibbo theory

ϑc : Cabibbo-angle
ϑc = 12.9°



KSETA Courses 2018

Expected transitions: flavor-changing
neutral currents
(FCNC)

i.e. decays like: analogous to observed decays:

Observation: BR(K0 ®m+m-) =7×10-9 BR(K+®m+nm) = 64%

proposal by GIM (1970): additional weak doublet
(Glashow, Illiopoulos, Maiani) => c-quark prediction

(observed 1970)

Z0

Z0 W+

m+ m+

m-

Sheldon L.
Glashow

Nobel price
1979

GIM Mechanism
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GIM Mechanism

Mixing matrix: ′
′

=  cos sin
−sin cos

Interference cancels mixed terms (d→s) in the Lagrangian.
Only flavor-conserving neutral currents remain:

̅ + ̅ ′ + + ̅ =  ⋯ = ̅ + ̅ + + ̅

higher order processes also suppressed

electroweak
eigenstates

mass eigenstates

no mixed terms ̅
→ no FCNC

short for −

S=0 if mu=mc

Þ amplitude ¹0
due to different
quark masses
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Today: 3 flavor-families with CKM-matrix d’ d MCKM:
(Cabibbo-Kobayashi-Maskawa) s’ = MCKM s unitary 3x3

b’ b matrix

c1 c3s1 s1s3 with:
MCKM = -c2s1 c1c2c3-s2s3eid c1c2s3+c3s3eid ci = cosqi si = sinqi

-s1s2 c1c3s2+c2s3eid c1s2s3-c2c3eid eid: phase
® CP-violation

Test the SM: search for FCNC
example: B0 ® m+m-K0 (SM: BR = 5×10-7), B0 ® m+m-K0* (SM: BR = 5×10-6)

»1 »1

»1

m+m+m+

m-m-m-
Z*/g*

Z*/g* Z*/g*

t             t t             t
W+ H+

Not allowed in SM
(FCNC)

allowed in SM
(“penguin”)

test the SM:
possible new particles (i.e SUSY)

3-Doublet Extension
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97% 22% 0.3%

CKM Matrix
change of quark flavor only via W-boson exchange

W-boson couples to mixture of quark generations

MCKM

§ complex elements
→ 18 parameters
§ Unitarity: (MM†=1)

+ quark phases

→ 4 free parameters
3 angles +
1 phase (CP)
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g
b

a

Unitarity Triangle
N>4 observables for 4 paramters
Þ overconstrained system
Þ test the SM

Graphical representation in „unitarity triangle“
Þ unitaritiy condition ∑ ∗ =  
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[ckmfitter.in2p3.fr]

Unitarity Triangle

Idea: overconstrain
with many independent
measurements
→ consistency check

Could see non-unitarity if
→ quarks mix with
additional generations
→ quarks couple to
additional bosons
→ …

so far consistent
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Flavor Oscillations
Quantum numbers of hadrons

hadrons produced in strong interactions
→ eigenstates of the strong interaction

Not necessarily eigenstates of the weak interaction

Flavor-changing process in neutral mesons:
transition between particles and anti-particles
→ flavor oscillations (also called: flavor mixing)

| ⟩ ↔ | ⟩

widely studied particle-anti-particle systems with oscillations

neutral Kaons: | ⟩ = | ̅⟩ ↔ | ⟩ = | ̅

neutral B-mesons: | = | ↔ | = | ̅
| ⟩ = |    ↔   | ⟩ = | ⟩̅



KSETA Courses 2018

Time Evolution
Calculation equivalent to neutrino-oszillations
Difference: Mesons are unstable, additional oszillations

caused by difference in decay width

transition probabilities:

± =
exp (−Γ )

2
cosh

ΔΓ
2

± cos (∆ )  

decay oscillation
from width
difference

oscillation
from mass
difference
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Different Oscillating Systems

Mass difference and
decay widths
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Learning from Oscillations
Compute mass differences from box diagrams

approximations: mt only relevant quark mass, Vtb»1

Result: ∆ , ≈ 2| |~ ,
∗

Measurement of |Vtd| and |Vts| from oscillation frequency

First results in Bd at ARGUS (DESY) and UA1 (CERN) 1987
→ large Dmd hints at high top quark mass
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Oscillations Measurements
B-factories: electron positron colliders with asymmetric beam energy

tuned to Y(4S) resonance: pairs ~ at rest in e+e- system

system moving relative to laboratory frame
→ better measurement of decay length

system is an entangled quantum system
→ first decay as or determines second decay

Measure flavor as function in difference of decay length
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• Run 1: Ös = 1.8 TeV (1992-1996)
65 pb-1: top quark discovered
(~20 events per experiment)

• Run 2: Ös=1.96 TeV(2001-2011)
12 fb-1 first precision top physics

• Ös = 7 TeV (2010-2011)
5 fb-1: 1M top pairs produced ~60k reco
re-establish top quark

• Ös=8 TeV(2012)
20 fb-1 precision top physics
statistical uncertainties become irrelevant

• Ös=13 TeV(2015-…)
>20 fb-1more precision studies
very rare processes

Where to find top quarks
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Producing top quarks

• Ös = 7 TeV (2010-2011)
5 fb-1: 1M top pairs produced ~60k reco
re-establish top quark

• Ös=8 TeV(2012)
20 fb-1 precision top physics
statistical uncertainties become irrelevant

• Ös=13 TeV(2015-…)
>20 fb-1more precision studies
very rare processes
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t ® Wb ~100%
classify by W decay

“Lepton [e,m] + jets” (34%)
tt ® blnbqq′

“Dilepton [e,m]” (6%)
tt ® blnbln

“All jets” (46%)
tt ® bqq′bqq′

“Tau + jets” (15%)
tt ® btnbqq′

t

Top quark decays
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Detector View
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Selecting Top events
Event selection:
→ enrich signal

over backgrounds
→ simplest method: „cuts“

Optimize selection :
→ Signal to backgground

/
→ signal significance

/ + 

→ optimized on simulation
to avoid bias

Lepton with pT > 20-30 GeV

Neutrino: MET > 30GeV

4 Jets with pT > 40GeV

2 jets from B-decays (b-tag)

Example: lepton + jets channel
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Backgrounds

Jet multiplicity in e+jets events

Which backgrounds are
distinguishable from signal
→ reducible backgrounds

Instrumental background
→ detector noise
→ misidentifications („fakes“)

e.g. jet fakes an electron

Important backgrounds for top
→ lepton + jets: W-boson

production in assotiation
with jets (W+ jetes)

→ Di-lepton: Z+ jets
→ also: multijets, single-top, …
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B-tagging
Many interesting process
with b-quarks
Þ H→bb, tt→WbWb
Þ identify jets with

B-hadrons

B-tag I (hadrons)
B-mesons are massive
and long lived (ct~0.5mm)
Þ B-mesons are massive

large impact parameter
tracks

Þ displaced massive vertex

B-tag II (leptons)
look for semi-leptonic B decays
Þ soft leptons

d0: impact parameter

LXY: 2d distance to
primary vertex
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Top Cross Section
Theory for top-pairs (2015)
NNLO + NNLL
Þ few % uncertainty

Compare Tevatron ↔ LHC
Þ LHC: 20-100 x tevatron xsec
Þ Tevatron: large difference

between pp and p-anti-p
tops produced from
valence-quarks

Þ LHC: small difference
between pp and p-anti-p
tops produced from gluons
and sea-quarks
→ skip complicated
antiproton generation
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Top Quark Mass
Reminder: MW, mt, MH
connected via loop diagrams

How to define the top mass?
→ usual defintion: pole-mass

= mass term in the propagator

→ Problem: non-perturbative effects for color charged particles
of O(LQCD)

→ Experimentally: use mass-parameter of Monte-Carlo-
Simulation Þ roughly equal to pole mass (within unc.)

→ Theoretically cleaner: scale-dependent „running mass“
Þ well defined within a given calculation schem (e.q MS-bar)
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Measuring the Top Mass
Direct measurement of top mass
use event kinematics

Lepton + Jets: kinematics
overconstrained
→ one unknown: neutrino pz
→ possible constraints:

W-mass, mt=manti-t

Combinatorics: associate jets
to partons (4 jets Þ 24 combinations)
→ find „best“ combination

Measurement method
at Tevatron and LHC
→ template fit (like W-mass)
→ matrix-element methods
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first measurement
(CDF, 1994, 7 events)

Mt=170±10 GeV

Top Quark Mass

now
(world average 2014)
Mt=173.34±0.76 GeV
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Measuring the Top Mass
World Combination CMS by channel

uncertainties < 1%

newer LHC measurements limited by systematic uncertainties

Visible tension between tevatron and LHC
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Mw, Mt, MH intermixed at loop level

~Mt
2 ~ln(mH)

Measuring the Top Mass

expect from EWK data :
MH = 90 +36 -27 GeV

MH < 152 GeV @ 95 % CL

Measured MW, MH, Mt consistent with SM

constrain exotic models (i.e. SUSY) instead


